課程目錄:Introduction to R with Time Series Analysis培訓
4401 人關注
(78637/99817)
課程大綱:

        Introduction to R with Time Series Analysis培訓

 

 

 

Introduction and preliminaries
Making R more friendly, R and available GUIs
Rstudio
Related software and documentation
R and statistics
Using R interactively
An introductory session
Getting help with functions and features
R commands, case sensitivity, etc.
Recall and correction of previous commands
Executing commands from or diverting output to a file
Data permanency and removing objects
Simple manipulations; numbers and vectors
Vectors and assignment
Vector arithmetic
Generating regular sequences
Logical vectors
Missing values
Character vectors
Index vectors; selecting and modifying subsets of a data set
Other types of objects
Objects, their modes and attributes
Intrinsic attributes: mode and length
Changing the length of an object
Getting and setting attributes
The class of an object
Arrays and matrices
Arrays
Array indexing. Subsections of an array
Index matrices
The array() function
The outer product of two arrays
Generalized transpose of an array
Matrix facilities
Matrix multiplication
Linear equations and inversion
Eigenvalues and eigenvectors
Singular value decomposition and determinants
Least squares fitting and the QR decomposition
Forming partitioned matrices, cbind() and rbind()
The concatenation function, (), with arrays
Frequency tables from factors
Lists and data frames
Lists
Constructing and modifying lists
Concatenating lists
Data frames
Making data frames
attach() and detach()
Working with data frames
Attaching arbitrary lists
Managing the search path
Data manipulation
Selecting, subsetting observations and variables
Filtering, grouping
Recoding, transformations
Aggregation, combining data sets
Character manipulation, stringr package
Reading data
Txt files
CSV files
XLS, XLSX files
SPSS, SAS, Stata,… and other formats data
Exporting data to txt, csv and other formats
Accessing data from databases using SQL language
Probability distributions
R as a set of statistical tables
Examining the distribution of a set of data
One- and two-sample tests
Grouping, loops and conditional execution
Grouped expressions
Control statements
Conditional execution: if statements
Repetitive execution: for loops, repeat and while
Writing your own functions
Simple examples
Defining new binary operators
Named arguments and defaults
The '...' argument
Assignments within functions
More advanced examples
Efficiency factors in block designs
Dropping all names in a printed array
Recursive numerical integration
Scope
Customizing the environment
Classes, generic functions and object orientation
Graphical procedures
High-level plotting commands
The plot() function
Displaying multivariate data
Display graphics
Arguments to high-level plotting functions
Basic visualisation graphs
Multivariate relations with lattice and ggplot package
Using graphics parameters
Graphics parameters list
Time series Forecasting
Seasonal adjustment
Moving average
Exponential smoothing
Extrapolation
Linear prediction
Trend estimation
Stationarity and ARIMA modelling
Econometric methods (casual methods)
Regression analysis
Multiple linear regression
Multiple non-linear regression
Regression validation
Forecasting from regression


主站蜘蛛池模板: 国产成人亚洲精品无码青青草原 | 天天躁天天狠天天透| 目中无人在线观看免费高清完整电影 | 国产午夜福利精品一区二区三区 | 18禁免费无码无遮挡不卡网站| 亚洲处破女AV日韩精品| 国产成人精品曰本亚洲78| 日本一本在线播放| 男女后进式猛烈XX00动态图片| 91在线国内在线播放老师| 久久精品无码一区二区www| 国产MD视频一区二区三区| 天堂成人一区二区三区| 最新亚洲春色av无码专区| 精品视频在线观看你懂的一区| 99国内精品久久久久久久| 久碰人澡人澡人澡人澡人视频 | 日韩成人免费在线| 精品国产丝袜自在线拍国| 0urp|ay加速器| 一级做a爰性色毛片免费| 亚洲乱码一区av春药高潮| 午夜亚洲乱码伦小说区69堂| 国产精品扒开腿做爽爽爽的视频| 日本一区二区三| 欧美国产一区二区| 精品久久久久久蜜臂a∨| 丁香婷婷六月天| 99国产在线播放| 一级片在线播放| 久久亚洲精品成人无码网站| 亚洲第一二三四区| 北条麻妃在线一区二区| 国产成人19禁在线观看| 国产高清在线a视频大全| 少妇高潮无套内谢麻豆传| 日韩三级一区二区三区| 99精品无人区乱码1区2区3区| 久久人人爽人人爽人人爽 | 日韩精品卡二卡3卡四卡| 麻豆国产96在线|日韩|