課程目錄:Machine Learning and Deep Learning培訓
4401 人關注
(78637/99817)
課程大綱:

         Machine Learning and Deep Learning培訓

 

 

 

Machine learning
Introduction to Machine Learning

Applications of machine learning
Supervised Versus Unsupervised Learning
Machine Learning Algorithms
Regression
Classification
Clustering
Recommender System
Anomaly Detection
Reinforcement Learning
Regression

Simple & Multiple Regression
Least Square Method
Estimating the Coefficients
Assessing the Accuracy of the Coefficient Estimates
Assessing the Accuracy of the Model
Post Estimation Analysis
Other Considerations in the Regression Models
Qualitative Predictors
Extensions of the Linear Models
Potential Problems
Bias-variance trade off [under-fitting/over-fitting] for regression models
Resampling Methods

Cross-Validation
The Validation Set Approach
Leave-One-Out Cross-Validation
k-Fold Cross-Validation
Bias-Variance Trade-Off for k-Fold
The Bootstrap
Model Selection and Regularization

Subset Selection [Best Subset Selection, Stepwise Selection, Choosing the Optimal Model]
Shrinkage Methods/ Regularization [Ridge Regression, Lasso & Elastic Net]
Selecting the Tuning Parameter
Dimension Reduction Methods
Principal Components Regression
Partial Least Squares
Classification

Logistic Regression

The Logistic Model cost function

Estimating the Coefficients

Making Predictions

Odds Ratio

Performance Evaluation Matrices

[Sensitivity/Specificity/PPV/NPV, Precision, ROC curve etc.]

Multiple Logistic Regression

Logistic Regression for >2 Response Classes

Regularized Logistic Regression

Linear Discriminant Analysis

Using Bayes’ Theorem for Classification

Linear Discriminant Analysis for p=1

Linear Discriminant Analysis for p >1

Quadratic Discriminant Analysis

K-Nearest Neighbors

Classification with Non-linear Decision Boundaries

Support Vector Machines

Optimization Objective

The Maximal Margin Classifier

Kernels

One-Versus-One Classification

One-Versus-All Classification

Comparison of Classification Methods

Introduction to Deep Learning
ANN Structure

Biological neurons and artificial neurons

Non-linear Hypothesis

Model Representation

Examples & Intuitions

Transfer Function/ Activation Functions

Typical classes of network architectures

Feed forward ANN.

Structures of Multi-layer feed forward networks

Back propagation algorithm

Back propagation - training and convergence

Functional approximation with back propagation

Practical and design issues of back propagation learning

Deep Learning

Artificial Intelligence & Deep Learning

Softmax Regression

Self-Taught Learning

Deep Networks

Demos and Applications

Lab:
Getting Started with R

Introduction to R

Basic Commands & Libraries

Data Manipulation

Importing & Exporting data

Graphical and Numerical Summaries

Writing functions

Regression

Simple & Multiple Linear Regression

Interaction Terms

Non-linear Transformations

Dummy variable regression

Cross-Validation and the Bootstrap

Subset selection methods

Penalization [Ridge, Lasso, Elastic Net]

Classification

Logistic Regression, LDA, QDA, and KNN,

Resampling & Regularization

Support Vector Machine

Resampling & Regularization

Note:

For ML algorithms, case studies will be used to discuss their application, advantages & potential issues.

Analysis of different data sets will be performed using R

主站蜘蛛池模板: 国产美女自慰在线观看| 特级aaa毛片| 日本特黄特黄刺激大片免费| 国产日韩精品欧美一区| 亚洲国产综合在线| 91精品久久久久久久久久| 永久在线观看www免费视频| 在线观看一区二区精品视频| 免费人成年激情视频在线观看| らだ天堂√在线中文www| 真实调教奇优影院在线观看| 女人喷液抽搐高潮视频| 人妻影音先锋啪啪av资源| 99精品欧美一区二区三区综合在线 | 精品亚洲麻豆1区2区3区 | 特黄AAAAAAAAA毛片免费视频| 天天综合天天操| 亚洲精品动漫免费二区| 97在线视频免费| 欧美大片va欧美在线播放| 国产熟女一区二区三区五月婷| 二区久久国产乱子伦免费精品| 黑白禁区在线观看免费版 | 国产精品成人不卡在线观看| 亚洲人成网站在线观看播放动漫| 麻豆久久婷婷综合五月国产| 日韩中文字幕在线观看视频| 国产99久久久久久免费看 | 亚洲精品一二区| 老司机精品免费视频| 日韩理论电影在线| 国产一区二区三区播放| аⅴ天堂中文在线网| 欧美黑人粗大xxxxbbbb| 国产欧美综合在线| 久久久久亚洲av无码去区首| 精品视频vs精品视频| 在线观看一二三区| 亚洲一二区视频| 色屁屁www欧美激情在线观看| 工棚里的换爱系列小说|